
1621

0022-4715/04/0600-1621/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 115, Nos. 5/6, June 2004 (© 2004)

Hydrodynamic Limit of Coagulation-Fragmentation
Type Models of k-Nary Interacting Particles

Vassili N. Kolokoltsov1

1 School of Computing and Mathematics, Nottingham Trent University, Burton Street,
Nottingham NG1 4BU, United Kingdom; e-mail: vassili.kolokoltsov@ntu.ac.uk

Received January 6, 2003; accepted January 6, 2004

Hydrodynamic limit of general k-nary mass exchange processes with discrete
mass distribution is described by a system of kinetic equations that generalize
classical Smoluchovski’s coagulation equations and many other models that are
intensively studied in the current mathematical and physical literature. Existence
and uniqueness theorems for these equations are proved. At last, for k-nary
mass exchange processes with k > 2 an alternative nondeterministic measure-
valued limit (diffusion approximation) is discussed.
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1. INTRODUCTION

1.1. Aims of the Paper

This paper is the third in the series of papers devoted to the Markov
models of k-nary interacting particle systems and their measure-valued
limits (see refs. 19 and 20). It deals with a special kind of interaction, which
are intensively studied in the current mathematical and physical literature,
namely to the coagulation-fragmentation models, and to more general mass
exchange processes. The classical examples of these models are given by the
Smoluchovski model of binary coagulation and its modifications which are
characterized by various coagulation kernels and also by the possibility of
the inverse process, i.e., fragmentation of a particle into a pair of smaller
ones (see, e.g., refs. 1 and 30 for recent results and a bibliography on these



models). In the present paper we shall extend these models to include not
necessary binary coagulations (i.e., any number of particles can coagulate
in one go), the fragmentation of particles to any number of pieces, and also
more general processes, where, say, the rate of coagulation or fragmenta-
tion of two particles can be increased or decreased by the presence of a
third particle, or where a particle can split another particle in pieces and
coagulate with one of them. These and similar possibilities lead to a general
kind of processes which could be called mass exchange processes. The aim
of the paper is to show that as a number of particles go to infinity and
under an appropriate (in fact, uniform) scaling of interaction rates, these
processes converge to a measure-valued deterministic processes (hydro-
dynamic or mean field limits) described by a system of kinetic equations
(system (1.7) below) that generalize Smoluchovski’s equations (and its
modifications that include possible fragmentation). We shall prove some
existence and uniqueness results for these equations which constitute a far
reaching generalization of the corresponding results obtained recently for
the Smoluchovski equations. At the end of the paper we show that a dif-
ferent (nonuniform) scaling can lead to nondeterministic limits (e.g., of
diffusion type) of our mass exchange processes.

Let us notice that the kinetic equations we obtain and analyze here
represent a particular case of more general equations obtained formally
(i.e., without any rigorous convergence or existence results) and by a dif-
ferent method in ref. 5. In fact, in ref. 5 we developed two such methods,
one was suggested in ref. 4 and was based on the study of the evolution of
the generating functionals and another was based on the idea of propaga-
tion of chaos (see, e.g., ref. 36).

It is worth mentioning some other related works on nonbinary
interactions. Namely, in ref. 32 the coalescence with multiple collisions
were studied and the corresponding models in which many of these mul-
tiple collisions can occur simultaneously were considered in refs. 9, 28,
and 34. The fragmentation processes in which particles can break into any
number of pieces were discussed in refs. 7 and 8.

When analyzing Smoluchovski’s equations, it often occurred that the
basic results were first obtained for a simplified model of discrete mass
distribution and then were generalized to a more difficult models of con-
tinuous mass distribution. We shall adhere to this tradition considering
here only discrete mass distribution and leaving the continuous models for
the future work (see, e.g., ref. 21). Notice that for the simplified discrete
models considered here, the measure-valued limits are described by processes
on the spaces of sequences (measures on the set of natural numbers), but
for more natural models with a continuous mass distribution, the same
procedure will lead to processes with values in the spaces of Borel measures
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on R+ or on more general measurable spaces (see, e.g., ref. 30 for binary
coagulations).

A further development of the theory should also include, of course,
spatially nontrivial models, where the particles are characterized not only
by their masses but also by their position in space (or other parameters),
which is changing according to some given law, for example as a Brownian
motion. In case of classical coagulation-fragmentation process, such spa-
tially nontrivial models have been investigated recently in several papers,
see, e.g., refs. 6, 11, 38, and references therein for discrete mass distribution
and refs. 2 and 26 for continuous masses. Another important problem for
the mass exchange processes considered here that should be addressed in
the future is the estimate of the gelation times and the asymptotics of the
large time behavior, see, e.g., refs. 10, 18, and 27 for this question in the
context of the standard coagulation- fragmentation models.

1.2. Some Notations

We list here a few notations that will be used throughout the paper
without further reminder:

Ck
r =r(r − 1) · · · (r − k+1)/k! is a standard binomial coefficient

defined for any real r and any positive integer k; in particular, it vanishes
whenever k > r and r is a positive integer; d j

i is the Kronecker symbol
denoting 1 for i=j and 0 otherwise;

R. (respectively R.

+ ) is a linear space of all sequences {x1, x2,...} of
real numbers (respectively its subset with all xj being nonnegative); R. is
considered to be a measurable space equipped with the usual s-algebra of
subsets generated by its finite-dimensional cylindrical subsets;

cp, p \ 1, denotes the Banach space of real sequences x={x1, x2,...}
equipped with the norm ||x||p=(;.

j=1 |xj |p)1/p;

c. denotes the Banach spaces of real sequences with lim n Q . xn=0
equipped with the sup-norm ||x||.=sup n |xn |;

Z. (respectively Z.

+ ) is the set of sequences N={n1, n2,...} of integer
numbers nj (respectively its subset with all nj being nonnegative) equipped
with the usual partial order: N [ M={m1, m2,...} means that nj [ mj for
all j;

R.

+, fin and Z.

+, fin are the subsets of R.

+ and Z.

+ respectively with only
finite number of nonvanishing coordinates; we shall denote by {ej} the
standard basis in R.

+, fin and will occasionally represent the sequences
N={n1, n2,...} ¥ Z.

+, fin as the linear combinations N=;.

j=1 njej;
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by M we shall denote the Banach space of real sequences x=
{x1, x2,...} with the norm m(x)=|x1 |+2 |x2 |+· · · ( letters M and m come
from the interpretation of m(x) as the mass of the state x for x ¥ R.

+, fin );

For a measurable space X, B(X) denotes the Banach space of real
bounded measurable functions on X equipped with the usual sup-norm;
if X is a topological space, Cb(X) denotes the Banach subspace of B(X)
consisting of continuous functions.

1.3. Discrete Mass Exchange Model and Its Hydrodynamic Limit

Suppose a particle is characterized by its mass m that can take only
integer values. A collection of particles is then described by a vector
N={n1, n2,...} ¥ Z.

+, where a nonnegative integer nj denotes the number of
particles of mass j. The state space of our model will be the set Z.

+, fin of
finite collections of particles (i.e., of vectors N with only a finite number
of positive nj ). We shall denote by |N|=n1+n2+· · · the number of par-
ticles in the state N, by m(N)=n1+2n2+· · · the total mass of the particles
in this state, and by supp(N)={j : nj ] 0} the support of N considered as
a measure on {1, 2,...}. By a mass exchange we shall mean any transforma-
tion Y W F in Z.

+, fin such that m(Y)=m(F). For instance, if Y consists of
only one particle, this transformation is pure fragmentation, and if F con-
sists of only one particle, this transformation is pure coagulation (not
necessarily binary, of course). By a process of mass exchange with a given
profile Y={k1, k2,...} ¥ Z.

+, fin we shall mean the (conservative) Markov
chain on Z.

+, fin specified by the Q-matrix QY with the entries

QY
NM=CY

NPM − N+Y
Y , M ] N, (1.1)

where CY
N=<i ¥ Supp(Y) Ck i

ni
and {PF

Y} is any collection of nonnegative
numbers parametrized by F ¥ Z.

+, fin such that PF
Y=0 whenever m(F) ] m(Y).

Observe that since the mass is preserved, this Markov chain is effectively a
chain with a finite state space (specified by the initial condition) and hence
it is well defined by the matrix (1.1) and does not explode in finite time.
Clearly, the behavior of the process defined by Q-matrix (1.1) is the
following: (i) if N \ Y does not hold, then N is a stable state, (ii) if N \ Y,
then any randomly chosen subfamily Y of N, i.e., any k1 particles of mass
1 from a given number n1 of these particles, any k2 particles of mass 2 from
a given number n2 etc (notice that the coefficient CY

N in (1.1) is just the
number of these choices) can be transformed to a collection F with the
rate PF

Y.
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Equivalently (and more appropriate for our purposes), the Markov
chain with the Q-matrix (1.1) can be specified by a Markov semigroup on
the space B(Z.

+, fin) of bounded functions on Z.

+, fin with the generator

GY f(N)=CY
N C

F: m(F)=m(Y)
PF

Y(f(N − Y+F) − f(N)). (1.2)

More generally, if k is a natural number, a mass exchange process of
order k (or k-nary mass exchange process) is a (conservative) Markov chain
on Z.

+, fin defined by the Q-matrix of the type Qk=;Y: |Y| [ k QY with QY

given by (1.1) or equivalently by the generator Gk=;Y: |Y| [ k GY. More
explicitly

Gk f(N)= C
Y: |Y| [ k, Y [ N

CY
N C

F: m(F)=m(Y)
PF

Y(f(N − Y+F) − f(N)), (1.3)

where PF
Y is an arbitrary collection of nonnegative numbers that vanish

whenever m(Y) ] m(F). As in case of a single Y, for any initial state N, this
Markov chain lives on a finite state space of all M with m(M)=m(N) and
hence is always well defined.

We shall now perform the following scaling. Choosing a positive real h,
we shall consider instead of a Markov chain on Z.

+, fin, a Markov chain on
hZ.

+, fin … R. with the generator

(Gh
kf)(hN)=

1
h

C
Y: |Y| [ k, Y [ N

h |Y|CY
N C

F: m(F)=m(Y)
PF

Y(f(Nh − Yh+Fh) − f(Nh)),

(1.4)

which can be considered as the restriction to B(hZ.

+, fin) of an operator in
B(R.

+, fin) that we shall again denote by Gh
k and that acts as

(Gh
kf)(x)=

1
h

C
Y: |Y| [ k

Ch
Y(x) C

F: m(F)=m(Y)
PF

Y(f(x − Yh+Fh) − f(x)), (1.5)

where the function Ch
Y is defined as

Ch
Y(x)= D

j ¥ Supp(Y)

xj(xj − h) · · · (xj − (kj − 1) h)
kj!

in case xj \ (kj − 1) h for all j and Ch
Y(x) vanishes otherwise. Clearly,

as h Q 0, operator (1.5) converges formally ( justification will be given in
Section 4) to the operator L on B(R.

+, fin) given by

Lk f(x)= C
Y: |Y| [ k

xY

Y!
C

F: m(F)=m(Y)
PF

Y C
.

j=1

“f
“xj

(fj − kj), (1.6)
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where

xY= D
j ¥ Supp(Y)

xkj
j , Y!= D

j ¥ Supp(Y)
kj!.

Operator (1.6) is an infinite dimensional first order partial differential
operator, whose characteristics are described by the following infinite
system of ordinary differential equations

ẋj= C
Y: |Y| [ k

xY

Y!
C

F: m(F)=m(Y)
PF

Y(fj − kj), j=1, 2,... . (1.7)

This is the general system of kinetic equations describing the hydrodynamic
limit (in the terminology of ref. 29, say) of k-nary mass exchange processes
with discrete mass distributions. In other contexts such a limit is also called
mean-field or McKean–Vlasov limit (see, e.g., ref. 12 or ref. 36). System
(1.7) is the main object for analysis in this paper.

1.4. Examples of Kinetic Equations (1.7)

In case of pure coagulation or fragmentation, PF
Y ] 0 only if either

|Y|=1 or |F|=1. Denoting PF
Y with |F|=1 by QY and PF

Y with |Y|=1
by PF, we can rewrite (1.6) as

(Lk f)(x)= C
F: |F| > 1

xm(F)PF 1 C
m(F) − 1

j=1

“f
“xj

fj −
“f

“xm(F)

2

+ C
Y: |Y| [ k

xY

Y!
QY

1 “f
“xm(Y)

− C
m(Y) − 1

j=1
kj

“f
“xj

2 , (1.8)

and system (1.7) takes the form

ẋj= C
.

m=j+1
xm C

F: m(F)=m
PFfj − xj C

F: m(F)=j
PF

+ C
Y: |Y| [ k, m(Y)=j

QY

xY

Y!
− C

Y: |Y| [ k, m(Y) > j
QY

xY

Y!
kj. (1.9)

In particular, in the case of binary coagulation-fragmentation, i.e., if PF

and QY do not vanish only for |Y|=2 and |F|=2, one can write
PF=P ij=P ji for F consisting of two particles of mass i and j and
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similarly QY=Qij=Qji for Y consisting of only two particles of mass i
and j. Hence (1.9) takes the form

ẋj= C
.

m=j+1
xmP̃m − j, j −

1
2

xj C
j − 1

l=1
P̃ l, j − l

+
1
2

C
j − 1

i=1
Qi, j − ixixj − C

.

m=j+1
Qm − j, jxm − jxj, (1.10)

where we introduced the notations P̃ ij=P ij for i ] j and P̃ ii=2P ii. System
(1.10) is a usual system of equation describing the mean field limit of
binary coagulation-fragmentation models (see, e.g., ref. 3), which turns to
classical Smoluchovski’s equation for a particular choice of coagulation-
fragmentation kernels P ij and Qij.

Another important particular case of (1.7) is obtained if one supposes
that only binary interactions are allowed, i.e., if PF

Y ] 0 only for |Y|=2,
which one can interpret as an assumption that any mass exchange can
happen only as a result of a collision of two particles. Parametrizing pro-
files Y with |Y|=2 by pairs (ij) (two particles of the mass i and j) we can
then rewrite (1.7) as

ẋj=
1
2

C
.

k=1
C
.

l=1
xkxl C

F: m(F)=l+k
PF

kl(fj − kj), j=1, 2,... . (1.11)

A further natural restriction (or simplification) of the model is an assump-
tion that any two particles can either coagulate forming one particle or
exchange masses and be transformed again in two particles (i.e., fragmen-
tation into three or more particles is not admissible). Then nonvanishing
PF

kl are either Pk+l
kl or P ij

kl with i+j=k+l and Eqs. (1.11) can be rewritten
in the form

ẋj=
1
2

C
.

i=j+1
C
i − 1

k=1
xkxi − kP j, i − j

k, i − k

+
1
2

C
j − 1

i=1
xixj − iP

j
j − i, i − C

.

k=1
xkxj C

F: m(F)=k+j
PF

kj, j=1, 2,... (1.12)

which is a well known system of coagulation equations with collision
breakage, see, e.g., refs. 33 and 37 for physical discussion and ref. 27 for
basic mathematical results. As noted in ref. 27, particular cases of (1.12) are
given by (a discrete version of ) the nonlinear breakage model studied in
ref. CR and by a model of the evolution of raindrops size spectra discussed
in ref. 35. Another particular case of (1.12) is a model when the masses i
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and j of new particles formed after the collision of particles with masses k, l
are some given functions of min(i, j). This model is considered in ref. 14
(Eq. (7) there) as an intermediate model connecting Smoluchovski’s equa-
tions and a discrete mass version of the Oort–Hulst model in Safronov’s
form. (33) Let us notice at last that only slight modification in Markov
model (1.5) and in given below mathematical proofs are needed to include
a model with random injections of monomers from ref. 13 or the Oort–
Hulst model discussed in refs. 14 and 25.

Finally let us observe that the main equation (1.7) can be written in
the following equivalent form

ẋj= C
k

l=1

1
l!

C
.

i1=1
· · · C

.

il=1
xi1

· · · xil
C

F: m(F)=i1+· · ·+il

PF
i1e1+· · ·+ilel

(fj − d i1
j − · · · − d il

j ),
(1.13)

which is sometimes more convenient to deal with.

1.5. Content of the Paper

In Section 2 we prove two results ( Theorems 2.1 and 2.2) on the exis-
tence of the global solutions to system (1.7) subject to additional assump-
tions on the growth of the rates PF

Y. Conservation of mass in these solu-
tions is also discussed. In Section 3 we prove ( Theorems 3.1 and 3.2) the
uniqueness and continuous dependence on the initial data for the solutions
of (1.7) under assumptions of Theorem 2.2 from Section 2. Then we discuss
some consequences for the corresponding contraction semigroups on B(M)
( Theorem 3.3). The main result of the paper ( Theorem 4.2) is given in
Section 4, where we prove the convergence of the Markov process with
generator (1.4) to a deterministic process in M … R.

+ described by (1.7). In
passing, we are giving here an alternative (probabilistic) proof of the main
existence results of Section 2 ( Theorem 4.1). Section 5 is devoted to a short
discussion of the diffusion approximations to the discrete mass exchange
processes which are available only for models with k > 2. Theorem 5.1
there is a consequence of the theory developed in refs. 20 and 23.

2. EXISTENCE OF SOLUTIONS FOR THE KINETIC EQUATIONS

For our mathematical study of kinetic equations we need some addi-
tional assumption that prevents the creation of a large number of equal (in
particular, small) particles in one go. From now on, we shall assume that
fj [ k for all F={f1,..., fl}, j=1,..., l, and Y such that PF

Y ] 0 (the use of
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the same constant k for the bound of fj and the maximal order of inter-
action is surely not essential and is made only to reduce the number of
constants).

This section is devoted to the problem of the existence of the global
solutions to system (1.7) which we shall write in the vector form

ẋ=f(x), f(x)=3fj(x)= C
Y: |Y| [ k

xY

Y!
C

F: m(F)=m(Y)
PF

Y(fj − kj)4 . (2.1)

We shall say that a function x(t) on [0, T) is a solution of (2.1) in the
Banach space cp or a cp-solution, if x(t) ¥ cp for all t ¥ [O, T), and more-
over, the r.h.s. of (2.1) is well defined, and (2.1) holds, where ẋ is defined
with respect to cp-norm. We say that x(t) is a solution of the integral version
of (2.1) with initial conditions x(0), or a weak solution, if x(t)={x1(t),
x2(t),...}, where all xj are continuous functions such that

xj(t)=xj(0)+F
t

0
fj(x(y)) dy

holds with the integrals being well-defined as Lebesgue integrals. We shall
say that x(t) is a global solution, if T=.. Clearly if x(t) is a cp-solution of
(2.1), then it is also a cq-solution for any q \ p and also a weak solution.

In the future, we shall often use the following sets of sequences with
masses not exceeding or equal to a given positive number c:

M[ c={x ¥ M 5 R.

+ : m(x) [ c}, Mc={x ¥ M 5 R.

+ : m(x)=c}.

By Pn we shall denote the natural finite-dimensional projections in R.

defined by

Pn({x1, x2,...})={x1,..., xn, 0, 0,...}.

Our first existence result is the following.

Theorem 2.1. (i) Suppose PF
Y are such that

C
F: m(F)=m(Y)

PF
Y=H(Y) D

.

j=1
jkj, (2.2)

where H(Y) is a function of Y that tends to zero as m(Y) Q .. Then for
any x0 ¥ c. such that m(x0) < . there exists a global c.-solution x(t) of
(2.1) with the initial condition x0 and such that x(t) ¥ M[ m(x0) for all t.
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(ii) Suppose PF
Y are such that

C
F: m(F)=m(Y)

PF
Y [ C 1D

.

j=1
jkj 2a

(2.3)

for all Y, where C > 0 and a ¥ (0, 1) are some constants. Then for any
p > 1/(1 − a) and an arbitrary x0 ¥ cp such that m(x0) < . there exists a
global cp-solution x(t) of (2.1) with the initial condition x0 and such that
x(t) ¥ M[ m(x0) for all t.

Remarks. (1) In case of binary pure coagulation, i.e., in case of
Smoluchovski’s equation (1.10) with vanishing P̃ ij, the estimate (2.2)
reduces to the estimate Qij=o(1) ij as i, j Q ., which is the best known
condition that implies the existence of the global solution for this model,
see, e.g., ref. 18. On the other hand, for Eq. (1.12) our estimate (2.2)
reduces to the estimate under which the global existence of the solutions to
(1.12) is proved in ref. 27. (2) The results on cp-solutions in (i), (ii) may
be new even for the classical equations (1.10), because usually one proves
the existence of a weak solution (see, e.g., refs. 3, 18, 27, 29, and 30).
(3) ;F PF

Y is the rate of decay of the profile Y and hence a natural quantity
to impose an upper bound on it. Notice also that < jkj in (2.2) is the
product of masses of all particles in the profile Y.

The proof of Theorem 2.1 will be based on the two simple facts from
calculus, which we formulate and prove here for completeness as Lemmas 2.1
and 2.2.

Lemma 2.1. Let B be a Banach space and K be its compact subset.
Let f and fn, n=1, 2,..., be a uniformly bounded family of continuous
functions K W B such that lim n Q . ||fn(x) − f(x)||=0 in B uniformly for
all x ¥ K. Moreover, suppose for any n and an xn

0 ¥ K there exists a global
solution xn(t) of equation ẋ=fn(x) in B with the initial condition
xn(0)=xn

0 and such that xn(t) ¥ K for all t. Suppose the sequence xn
0 con-

verges in B to some x0 ¥ K. Then there exists a global solution of equation
ẋ=f(x) in B with the initial condition x(0)=x0 and such that x(t) ¥ K for
all t.

Proof. As all xn take values in a compact set, and the derivatives
ẋn(t) are uniformly bounded, one can choose a subsequence, of the
sequence of functions xn(t), which we shall again denote by xn, that con-
verges to a function x(t) uniformly for t [ T with an arbitrary T. Clearly
x(t) also takes values in K. Moreover, as

||fn(xn(t)) − f(x(t))|| [ ||fn(xn(t)) − f(xn(t))||+||f(xn(t)) − f(x(t))||,
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and since f is continuous and hence uniformly continuous in K, we
conclude that the sequence of derivatives ẋn(t)=fn(xn(t)) converges to
f(x(t)) uniformly on t [ T for all T. Hence ẋ(t) exists in B and equals
f(x(t)).

Lemma 2.2. For any finite c > 0 the set M[ c is a compact subset of
cp (in the topology of cp, of course, and not in the topology of M) for any
finite p \ 1 or p=..

Proof. (i) Let us prove that M[ c is closed. Suppose xn, n=1, 2,...,
is a sequence in cp 5 M[ c and x=lim n Q . xn in cp. Then m(Plxn) [ m(xn)
[ c. As the convergence of a sequence xn in each cp implies the convergence
of all finite-dimensional projections Plxn, it follows that m(Plx) [ c. This
clearly implies m(x) [ c, i.e., that x ¥ M[ c.

(ii) Let us prove that M[ c is a pre-compact set. Let xn be a sequence
in cp 5 M[ c. By diagonal process one can choose a subsequence xnŒ and an
element x ¥ R. such that PlxnŒ converges to Plx for all l. But such a con-
vergence for a sequence from M[ c implies its convergence in any cp with
p \ 1, because by choosing large enough l one can ensure that xn −Plxn are
uniformly small in cp.

Proof of Theorem 2.1. (i) Let us first prove that f(x) from (2.1) is
uniformly bounded on any compact set M[ c, c < .. Due to (2.2) and since
fj [ k, kj [ k for all j, Y, F,

||f(x)||. [ s C
Y: |Y| [ k

xY

Y!
D
.

j=1
jkj=s C

k

l=1

1
l!

(m(x)) l [ s C
k

l=1

c l

l!

on M[ c, where s=2k supY o(1).
Next, f(x) ¥ c. whenever m(x) < .. In fact, as fj ] 0 or kj ] 0 implies

m(Y) \ j, it follows that

|fj(x)| [ k C
Y: |Y| [ k, m(Y) \ j

xY

Y!
D

i ¥ supp(Y)
ik io(1)m(Y) Q .=o(1)j Q . C

k

l=1

1
l!

(m(x)) l.

We shall now apply Lemma 2.1 in the Banach space c. with the
compact set K=M[ c using the finite-dimensional approximations fn to f
defined by

fn
j (x)= C

Y: |Y| [ k, m(Y) [ n

xY

Y!
C

F: m(F)=m(Y)
PF

Y(fj − kj). (2.4)
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Clearly fn(x)=fn(Pn(x))=Pn(fn(x)) for all x with a finite mass. Hence
equations ẋ=fn(x) are finite-dimensional, i.e., x(t) −Pn(x(t)) are con-
stants along the solutions of these equations and Pn(x(t)) satisfy the
n-dimensional differential equations. Consequently, equations ẋ=fn(x)
have unique solutions in M[ c for any c < . and x0 ¥ M[ c (notice that the
vector field fn(x) is nowhere pointing outside M[ c on its border and hence
a solution is forced to stay in M[ c whenever x0 ¥ M[ c ). As all fn are
uniformly bounded on each M[ c (the same proof as for f above), to
deduce the statement (i) from Lemma 2.1 it remains to show that
||fn(x) − f(x)||. Q 0 as n Q . uniformly for x ¥ M[ c. This is true because
of the estimate

||fn(x) − f(x)||. [ k C
Y: |Y| [ k, m(Y) \ n

xY

Y!
D
.

j=1
jkjo(1)n Q .

=o(1)n Q . C
k

l=1

1
l!

(m(x)) l.

(ii) We shall follow the same line of argument as in (i) and will use
the same approximation (2.4) and Lemma 2.1 in the Banach spaces cp with
p > 1/(1 − a). First let us show that under (2.3), f and fn are uniformly
bounded in cp. As |Y| [ k, it follows that if fj ] 0 or kj ] 0, then
m(Y)=m(F) \ j and hence there exists i \ j/k such that ki ] 0. Hence

|fj(x)| [ 2kC C
Y: |Y| [ k, m(Y) \ j

xY

Y!
D

i ¥ supp(Y)
(ik i)a

[ 2kC C
Y: |Y| [ k, ,l \ j/k: k l > 0

xY

Y!
D

i ¥ supp(Y)
(ik i)a.

Since for any Y such that kl ] 0 for some l \ j/k,

D
i ¥ supp(Y)

(ik i)a=(lk l)−(1 − a) lk l D
i ] l

(ik i)a [ k1 − aj−(1 − a) D
i ¥ supp(Y)

ik i,

we conclude that

|fj(x)| [ 2Ck2 − aj−(1 − a) C
Y: |Y| [ k

xY

Y!
D

i ¥ supp(Y)
ik i

=2Ck2 − aj−(1 − a) C
k

l=1

1
l!

(m(x)) l, (2.5)
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and hence ||f(x)||p is uniformly bounded in M[ c for any p > 1/(1 − a) and
c < .. Similarly all ||fn||p are bounded. To deduce statement (ii) from
Lemma 2.1 it remains to show that ||fn(x) − f(x)||p Q 0 as n Q .. To this
end we estimate

|fn
j (x) − fj(x)| [ 2kC C

Y: |Y| [ k, m(Y) \ max(n, j)

xY

Y!
D

i ¥ supp(Y)
(ik i)a

[ 2Ck2 − a[max(n, j)]−(1 − a) C
k

l=1

1
l!

(m(x)) l,

and hence

||fn(x) − f(x)||p [ 2Ck2 − a 5n−(p(1 − a) − 1)+ C
j > n

j−p(1 − a)61/p

C
k

l=1

1
l!

(m(x)) l,
(2.6)

which tends to zero as n Q . for p > 1/(1 − a). Proof of Theorem 2.1 is
complete.

We shall discuss now the existence of the mass preserving solutions by
a generalization of a (rather standard by now) method of higher mass
moments in the spirit of papers of refs. 27 and 29. For brevity, we shall use
only the second mass moments (generalization to other moments of order
j > 1 with the corresponding modifications and improvements of final
results are more or less straightforward). The second moment for a x ¥ R.

+

is defined as

m2(x)= C
.

j=1
j2xj. (2.7)

The corner stone in the proof of the next theorem is given by the following
estimate on the evolution of the second mass moments.

Lemma 2.3. Suppose

C
F: m(F)=m(Y)

PF
Y [ Cm(Y) (2.8)

for some constant C. Let x(t) be a solution of the finite-dimensional system
ẋ=fn(x) with fn given by (2.4) and with the initial point x0 ¥ Rn

+. Then

m2(x(t)) [ eat(m2(x0)+b) (2.9)

with constants a, b depending only on C from (2.8), k and m(x0).
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Proof. For brevity, we shall write simply x for x(t). From (2.4) it
follows that

d
dt

m2(x)= C
Y: |Y| [ k, m(Y) [ n

xY

Y!
C

F: m(F)=m(Y)
PF

Y C
j

j2(fj − kj).

The first key observation (which is easily seen by inspection) is that

max
F: m(F)=m(Y)

m2(F)=(m(Y))2, (2.10)

which together with (2.8) implies that

d
dt

m2(x) [ C C
Y: |Y| [ k, m(Y) [ n

xY

Y!
m(Y)[(m(Y))2 − m2(Y)]. (2.11)

To make another step, let us use the multinomial formula to rewrite this
estimate in the following equivalent but more explicit form

d
dt

m2(x)

[ C C
k

i=1

1
i!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
(j1+· · ·+ji)[(j1+· · ·+ji)2 − (j2

1+· · ·+j2
i )]

and then use the explicit symmetry of indexes j1,..., ji to again rewrite it as

d
dt

m2(x)

[ C C
k

i=2

1
(i − 1)!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
j1[(j1+· · ·+ji)2 − (j2

1+· · ·+j2
i )].
(2.12)

The next step is now to use the obvious equality

(j1+· · ·+ji)2 − (j2
1+· · ·+j2

i )=j1 j2+· · ·+j1 ji+j2 j3+· · ·+j2 ji+· · ·

and the symmetry of indexes j2,..., ji in (2.12) to rewrite (2.12) as

d
dt

m2(x) [ C C
k

i=2

1
(i − 2)!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
j2

1 j2

+
1
2

C C
k

i=3

1
(i − 3)!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
j1 j2 j3.
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Increasing the r.h.s. of this inequality one obtains

d
dt

m2(x) [ C C
k

i=2

1
(i − 2)!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
j2

1 j2 · · · ji

+
1
2

C C
k

i=3

1
(i − 3)!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
j1 j2 · · · ji

=C C
k

i=2

1
(i − 2)!

m2(x)(m(x)) i − 1+
C
2

C
k

i=3

1
(i − 3)!

(m(x)) i.

Hence

d
dt

m2(x) [ am2(x)+b (2.13)

with

a=C C
k

i=2

1
(i − 2)!

(m(x0)) i − 1, b=
C
2

C
k

i=3

1
(i − 3)!

(m(x0)) i.

Clearly (2.13) implies (2.9) with b=a/b (say, by Gronwall’s lemma), and
Lemma 2.3 is proved.

We can now prove our second result on the existence of solutions to
(1.7). To this end, let us denote by M2

c (for any positive finite c) the set of
all sequences from Mc with a finite second mass moment, i.e.

M2
c ={x ¥ M 5 R.

+ : m(x)=c, m2(x) < .}.

Theorem 2.2. Suppose (2.8) holds and x ¥ M2
c with some c > 0.

Then for all p > 1 there exists a global cp-solution of (2.1) with the initial
condition x0 such that x(t) ¥ M2

c for all t; in particular, the conservation of
mass equation holds, i.e.

m(x(t))=m(x0). (2.14)

Remarks. (1) Notice that (2.8) does not imply (2.2) and hence even
the existence of a solution does not follow directly from Theorem 2.1.
(2) Seemingly it is possible to prove the existence of a mass conserving
solution without the assumption that m2(x) < . by generalizing the corre-
sponding arguments from ref. 27 or ref. 3. We choose here more restrictive
assumptions which, on the one hand, require a much shorter proof, and
on the other hand, coincide with the assumptions that we need to prove
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uniqueness in the next section. (3) In the case of binary coagulation-frag-
mentation models, our conditions (2.2) and (2.8) coincide with the usually
used growth conditions, see, e.g., ref. 30.

Proof. We shall prove the existence of the solutions on t ¥ [0, T]
with an arbitrary fixed T by again using Lemma 2.1 in the Banach space cp

with any p > 1, with the same approximations fn from (2.4), and with the
compact set

KT={x ¥ cp : m(x) [ m(x0), m2(x) [ eaTm2(x0)+b}

(a proof that KT is a compact set is done by precisely the same arguments
as in the proof of Lemma 2.2 above).

Let xn
0=Pnx0. Then there exists a unique solution xn(t) of ẋ=fn(x)

in Rn
+ with the initial condition xn

0. By Lemma 2.3, xn(t) ¥ KT for all n and
t [ T. As clearly

m(Y) [ |Y| D
i ¥ supp(Y)

ik i (2.15)

for any profile Y ¥ Z.

+, fin, (2.8) implies (2.3) with a=1 and we get

|fn
j (x)| [ Ck2 C

Y: |Y| [ k, m(Y) \ j

xY

Y!
D

i ¥ supp(Y)
ik i

for any x and then by the same argument as used when proving (2.5) we
estimate the r.h.s. of this inequality by

2Ck3 C
Y: |Y| [ k

xY

Y!
1
j

D
i ¥ supp(Y)

i2k i=2Ck3 1
j

C
k

l=1

1
l!

(m2(x)) l.

Hence for any p > 1, the norms ||fn(x)||p are uniformly bounded for
x ¥ KT. Let us prove that ||fn(x) − f(x)||p tends to zero as n Q . uniformly
for all x ¥ KT. As in the proof of estimate (2.6) we get

|fn
j (x) − fj(x)| [ 2k2C C

Y: |Y| [ k, m(Y) \ max(n, j)

xY

Y!
D

i ¥ supp(Y)
ik i

[ 2Ck3[max(n, j)]−1 C
k

l=1

1
l!

(m2(x)) l,

and hence

||fn(x) − f(x)||p [ 4Ck3 5n−(p − 1)+ C
j > n

j−p61/p

C
k

l=1

1
l!

(m2(x)) l,
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which tends to zero as n Q . for p > 1. As T is arbitrary, we get the exis-
tence of a global solution by Lemma 2.1. As KT is a compact set, the
obtained solution belongs to KT on [0, T] and consequently it always has
the finite mass moment m2(x(t)).

It remains to show (2.14). This is simple. In fact, as the conservation
of mass holds for the approximations xn, it is enough to prove that

lim
n Q .

|m(xn(t)) − m(x(t))|=0.

This is true, because on the one hand,

lim
n Q .

|m(Plxn(t)) − m(Plx(t))|=0

for any l, and on the other hand, both m(xn(t) −Plxn(t)) and m(x(t) −Plx(t))
can be made uniformly (in n) arbitrary small by choosing large enough l
due to the uniform bound on the second mass moment. Theorem 2.2 is
thus proved.

We shall conclude this section by proving a lower bound for the
growth of m2(x) on the solutions of ẋ=fn(x) (similar to the upper bound
(2.13)) that we shall use in the next section.

Lemma 2.4. Under assumptions of Lemma 2.3 suppose additionally
that there exists a constant w \ 0 such that either

m2(F) − m2(Y) \ − wm(Y) (2.16)

whenever PF
Y ] 0, or that for all Y

C
F: m(F)=m(Y)

PF
Y [ w. (2.17)

Then for any solution x(t) of the equation ẋ=fn(x) one has

d
dt

m2(x(t)) \ − ãm2(x(t)) − b̃ (2.18)

and hence

m2(x(t)) \ e−ãtm2(x0) − b̃ (2.19)

with some nonnegative constants ã, b̃, b̃.
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Remark. Of course, condition (2.16) is restrictive. However, it holds
in many important situations. For example, it holds for processes of pure
coagulation with w=0. It holds for Becker–Döring equations (see ref. 3
and references therein) and for the generalized Becker–Döring models
introduced in ref. 18. Roughly speaking, condition (2.16) forbids fragmen-
tation into very small pieces in one go. A discussion of the applicability of
condition (2.17), is given in ref. 2.

Proof. It is similar to the proof of Lemma 2.3. Using (2.16) instead
of (2.10), or (2.17), yields instead of (2.11) the estimate

d
dt

m2(x) \ − C̃ C
Y: |Y| [ k, m(Y) [ n

xY

Y!
(m(Y))2,

where C̃=Cw in case (2.16) or C̃=w in case (2.17). Consequently

d
dt

m2(x)

\ − C̃ C
k

i=1

1
i!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
[j2

1+· · ·+j2
i +2j1 j2+2j1 j3+· · ·+j2 j3+· · ·],

and by symmetry

d
dt

m2(x) \ − C̃ C
k

i=1

1
(i − 1)!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
j2

1

−
1
2

C̃ C
k

i=2

1
(i − 2)!

C
n

j1=1
· · · C

n

ji=1
xj1

· · · xji
j1 j2

\ − C̃ C
k

i=1

1
(i − 1)!

m2(x)(m(x)) i − 1 −
C̃
2

C
k

i=2

1
(i − 2)!

(m(x)) i,

which is precisely (2.18). Clearly (2.19) is a consequence of (2.18).

3. UNIQUENESS AND CONTINUOUS DEPENDENCE ON INITIAL

DATA

The main objective of this section is to prove the following result.

Theorem 3.1. Suppose (2.8) holds. Let t={t1, t2,...} ¥ M2
c , g=

{g1, g2,...} ¥ M2
c̃ with some positive c and c̃. Let x(t), y(t) be any global

weak or c.-solutions of (2.1) with the initial conditions t and g respectively
and such that m2(x(t)) and m2(y(t)) are uniformly bounded on t ¥ [0, T]
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for any T > 0 (the existence of these solutions is ensured by Theorem 2.2).
Then for all t

m(x(t) − y(t)) [ C(T) m(t − g), (3.1)

where C(T) is a constant depending on T, and on c, k and the bounds for
m2(x(t)) and m2(y(t)) on [0, T].

Remark. Recall that m(t − g)=;.

i=1 i |ti − gi |; this function clearly
defines a metric on M2

c and Mc with respect to which both these spaces are
complete metric spaces.

The main idea of the proof of Theorem 3.1 is the same as used in
refs. 3 and 27 for Eqs. (1.10) and (1.12), respectively. Two basic technical
ingredients of this proof are obtained below as Lemmas 3.1 and 3.2. We
shall use the obvious observation that the uniform boundedness of m2(x(t))
implies the uniform boundedness of m(x(t)).

Lemma 3.1. Suppose (2.8) holds. Let x(t) be a solution of (2.1) that
satisfies the assumptions of Theorem 3.1. Then for all T

lim
n Q .

F
T

0
C
n

i=1
i C

Y: |Y| [ k, m(Y) \ n

(x(t))Y

Y!
C

F: m(F)=m(Y)
PF

Yki dt=0, (3.2)

lim
n Q .

F
T

0
C
n

i=1
i C

Y: |Y| [ k, m(Y) \ n

(x(t))Y

Y!
C

F: m(F)=m(Y)
PF

Yfi dt=0. (3.3)

Proof. First let us show that (3.3) is a consequence of (3.2). As

C
n

i=1
ixi(t)= C

n

i=1
iti+ C

n

i=1
i F

T

0
fi(x(t)) dt,

(2.1) and (2.13) imply that

lim
n Q .

F
T

0
C
n

i=1
i C

Y: |Y| [ k

(x(t))Y

Y!
C

F: m(F)=m(Y)
PF

Y(fi − ki) dt=0. (3.4)

But

C
n

i=1
i C

Y: |Y| [ k, m(Y) [ n

(x(t))Y

Y!
C

F: m(F)=m(Y)
PF

Y(fi − ki)

= C
Y: |Y| [ k, m(Y) [ n

(x(t))Y

Y!
C

F: m(F)=m(Y)
PF

Y(m(F) − m(Y))=0.
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Consequently, (3.4) implies

lim
n Q .

F
T

0
C
n

i=1
i C

Y: |Y| [ k, m(Y) \ n

(x(t))Y

Y!
C

F: m(F)=m(Y)
PF

Y(fi − ki) dt=0,

and hence (3.2) and (3.3) are equivalent.
Now let us prove (3.2). By (2.8) and the uniform boundedness of

m2(x(t)), it is enough to show that

lim
n Q .

C
n

i=1
i C

Y: |Y| [ k, m(Y) \ n

xY

Y!
m(Y) ki=0 (3.5)

uniformly for all x with uniformly bounded m2(x) (and hence also m(x)).
As ki [ k and as xi are supposed to be uniformly bounded, to prove (3.5) it
is sufficient to show that

lim
n Q .

C
n

i=1
ixi C

Y: |Y| [ k − 1, m(Y) \ n − ki, k i=0

xY

Y!
(i+m(Y))=0. (3.6)

We shall represent the l.h.s. of (3.6) as the sum of two terms by writing the
sum ;n

i=1 as the the sum of two sums over i \ n/(2k) and over i < n/(2k)
respectively. To prove that the first term tends to zero it is enough to show
that

lim
n Q .

C
.

i=n
ixi C

Y: |Y| [ k, k i=0

xY

Y!
(i+m(Y))=0, (3.7)

and to prove that the second term tends to zero it is enough to show that

lim
n Q .

C
.

i=1
ixi C

Y: |Y| [ k, m(Y) \ n, k i=0

xY

Y!
(i+m(Y))=0. (3.8)

Now (3.7) holds, because the sum on the l.h.s. of (3.7) can be estimated by

C
.

i=n
i2xi C

Y: |Y| [ k

xY

Y!
+ C

.

i=n
ixi C

Y: |Y| [ k

xY

Y!
m(Y)

and both terms here tends to zero as n Q ., since in each term the first
multiplier tends to zero and the second is bounded (because m2(x) is
bounded). Similarly (3.8) holds, because the sum on the l.h.s. of (3.8) can
be estimated by

C
.

i=1
i2xi C

Y: |Y| [ k, m(Y) \ n

xY

Y!
+ C

.

i=1
ixi C

Y: |Y| [ k, m(Y) \ n

xY

Y!
m(Y)
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and again both terms here tend to zero as n Q ., since in each term the
second multiplier tends to zero and the first is bounded.

Lemma 3.2. Let x={x1, x2,...} and y={y1, y2,...} have bounded
second moments m2(x) and m2(y). Let zi=xi − yi and si=sign(xi − yi)
(i.e., si is 1, zero, or − 1 respectively if xi − yi is positive, zero, or negative).
Then

C
n

i=1
isi(fn

i (x) − fn
i (y)) [ s C

n

i=1
i |zi |, (3.9)

where fn
i are defined by (2.4) and where the constant s depends only on

c, k, m2(x), m2(y) and not on n.

Proof. By (2.4), the l.h.s. of (3.9) can be written as

C
n

i=1
isi C

Y: |Y| [ k, m(Y) [ n

xY − yY

Y!
C

F: m(F)=m(Y)
PF

Y(fi − ki),

or using (1.13) even more explicitly as

C
k

l=1

1
l!

C
i1,..., il: i1+· · ·+il [ n

(xi1
· · · xil

− yi1
· · · yil

)

× C
F: m(F)=i1+· · ·+il

PF
i1e1+· · ·+ilel

1 C
n

i=1
isifi − i1si1

− · · · − ilsil
2

= C
k

l=1

1
l!

C
i1,..., il : i1+· · ·+il [ n

C
l

m=1
xi1

· · · xim − 1
zim

yim+1
· · · yil

× C
F: m(F)=i1+· · ·+il

PF
i1e1+· · ·+ilel

1 C
n

i=1
isifi − i1si1

− · · · − ilsil
2 . (3.10)

Using the inequality

C
n

i=1
isifi [ C

n

i=1
ifi=m(F)=m(Y)=i1+· · ·+il,

and (2.8) we can estimate

C
F: m(F)=i1+· · ·+il

PF
i1e1+· · ·+ilel

1 C
n

i=1
isifi − i1si1

− · · · − ilsil
2 zim

[ (i1+· · ·+il)(i1+· · ·+il − i1si1
− · · · − ilsil

) sim
|zim

|

[ 2(i1+· · ·+il)(i1+· · ·+il − im) |zim
|. (3.11)
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From (3.10) and (3.11) we conclude that

C
n

i=1
isi(fn

i (x) − fn
i (y)) [ A+B, (3.12)

where

A=2 C
k

l=1

1
l!

C
n

i1=1
· · · C

n

il=1
C

l

m=1
xi1

· · · xim − 1
yim+1

· · · yil
|zim

|

× im(i1+· · ·+im − 1+im+1+· · ·+il),

B=4 C
k

l=1

1
l!

C
n

i1=1
· · · C

n

il=1
C

l

m=1
xi1

· · · xim − 1
yim+1

· · · yil
|zim

|

× [(i1+· · ·+im − 1)2+(im+1+· · ·+il)2].

By (2.15)

A [ 2 C
k

l=1

1
(l − 1)!

C
n

i1=1
· · · C

n

il=1
C

l

m=1
xi1

· · · xim − 1
yim+1

· · · yil
|zim

|

× im(i1 · · · im − 1im+1 · · · il)

[ 2 C
n

i=1
i |zi | C

k

l=1

1
(l − 1)!

C
l

m=1
(m(x))m − 1 (m(y)) l − m

[ 2 C
n

i=1
i |zi | C

k

l=1

1
(l − 1)!

(m(x)+m(y)) l − 1 [ 2 C
n

i=1
i |zi | em(x)+m(y).

Similarly

B [ 4 C
n

i=1
|zi | C

k

l=1

1
l!

C
l

m=1
(m − 1)2 (l − m)2 m2(x)m − 1 m2(y) l − m

[ 4 C
n

i=1
|zi | C

k

l=1
l3 1

(l − 1)!
(m2(x)+m2(y)) l − 1

[ 4k3 C
n

i=1
|zi | em2(x)+m2(y).

These estimates together with (3.12) clearly imply (3.9).

Proof of Theorem 3.1. Denoting si(t)=sign(xi(t) − yi(t)) we can
write

|xi(t) − yi(t)|=|ti − gi |+F
t

0
si(y)(fi(x(y)) − fi(y(y))) dy.
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Consequently

m(Pn(x(t)) −Pn(y(t)))

= C
n

i=1
i |xi(t) − yi(t)|

[ C
n

i=1
i |ti − gi |+ C

n

i=1
F

t

0
si(y) i(fn

i (x(y)) − fn
i (y(y))) dy

+ C
n

i=1
F

t

0
i |fi(x(y)) − fn

i (x(y))| dy+ C
n

i=1
F

t

0
i |fi(y(y)) − fn

i (y(y))| dy.

By Lemmas 3.1 and 3.2 this implies that

C
n

i=1
i |xi(t) − yi(t)| [ C

n

i=1
i |ti − gi |+s F

t

0
C
n

i=1
i |xi(y) − yi(y)| dy+o(1),

where o(1) tends to zero as n Q .. Passing to the limit as n Q . we obtain

m(x(t) − y(t)) [ m(t − g)+s F
t

0
m(x(y) − y(y)) dy,

which implies (3.1) by Gronwall’s lemma. Theorem 3.1 is proved.
In the following theorem we collect some more or less direct conse-

quences of Theorems 2.2 and 3.1 on the properties of solutions to (2.1).

Theorem 3.2. Suppose (2.8) holds and x0 ¥ M2
c with some c > 0.

Then

(i) there exists a unique weak solution x(t)=X(t, x0) of (2.1) with
the initial condition x0 and such that m2(x(t)) is uniformly bounded on
t ¥ [0, T] for any positive T; this solution can be equivalently characterized
as a unique weak solution of (2.1) such that it is a limit in c. of a sub-
sequence of the sequence of solutions xn(t) of the equations ẋ=fn(x) with
initial conditions xn

0=Pnx0; moreover, this weak solution is in fact a
cp-solution for any p > 1 and x(t) ¥ M2

c for all t;

(ii) the solution X(t, x0) is the limit in the topology of M (i.e., in
m-norm) of the whole sequences (not just its subsequence) of the finite
dimensional approximations xn(t) described above;

(iii) the solution X(t, x0) is a continuous function of two variables
t and x0 for x0 ¥ 1c \ 0 M

2
c , where x0 and X(t, x0) are considered in the

topology of M;
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(iv) if (2.16) or (2.17) hold, then the function m2(x(t)) is locally
Lipschitz continuous function of t which is therefore absolutely continuous
and almost everywhere differentiable; the estimate

− am2(X(t, x0)) − b [
d
dt

m2(X(t, x0)) [ am2(X(t, x0))+b (3.13)

holds for the derivative with some constants a, b depending on c, k and
constants C and w in (2.8), (2.16), or (2.17); this implies

m2(X(t, x0)) \ e−atm2(x0) − b/a. (3.14)

Remarks. (1) For a discussion of conditions (2.16) and (2.17) see the
remark after Lemma 2.4. (2) From (iv) it follows, as one can expect that in
processes of pure coagulation when m2(F) \ m2(Y) whenever PF

Y ] 0, the
function m2(x(t)) does not decrease on the solution x(t)=X(t, x0).

Proof. (i) is immediate from Theorems 2.2 and 3.1. (ii) As follows
from our proof of Theorem 2.2, from the sequence xn(t) and similarly from
any its subsequence, one can choose a subsequence converging in c. to a
c.-solution of (2.1). As such limiting solution X(t, x0) of (2.1) is unique by
(i), we conclude that the whole sequence xn(t) converges in c. to X(t, x0).
But as all m2(xn(t)) are locally (in t) uniformly (in n) bounded, the
c.-convergence implies the convergence in M. (iii) As X(t, x0) is a
c.-solution of (2.1), it depends continuously on t in c.-topology. But again
as above, as all m2(xn(t)) are locally (in t) uniformly (in n) bounded, the
continuity in c.-norm implies the continuity in m-norm. On the other hand,
by Theorem 3.1, X(t, x0) is continuous in x0 locally uniform in t, which
implies the required joint continuity of X(t, x0) as a function of two
variables. (iv) m2(xn(t)) is differentiable for finite-dimensional approxima-
tions xn(t) of the solution X(t, x0). Of course, one should be careful with
differentiability when passing from xn(t) to X(t, x0). We proceed as
follows. From (2.13)

m2(xn(t+y)) [ m2(xn(t))+y(am2(xn(t))+b+E)

for an arbitrary E and for y small enough. As xn(t) converges to X(t, x0) in
c.-norm, it implies

m2(PmX(t+y, x0)) [ m2(PmX(t, x0))+y(am2(PmX(t, x0))+b+E)
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for any m. Passing to the limit as m Q . we get the same inequality for
X(t, x0) instead of PmX(t, x0). As E is arbitrary we then conclude that

lim sup
y Q 0

m2(X(t+y, x0)) − m2(X(t, x0))
y

[ am2(X(t, x0))+b. (3.15)

The same arguments lead from (2.16) or (2.17) and Lemma 2.4 to the
estimate

lim inf
y Q 0

m2(X(t+y, x0)) − m2(X(t, x0))
y

\ − ãm2(X(t, x0)) − b̃. (3.16)

Together (3.15) and (3.16) imply the Lipschitz continuity of m(X(t, x0))
and estimates (3.13) Clearly (3.14) follows from (3.13). Theorem 3.2 is
proved.

To conclude this section, we discuss some consequences of Theorem 3.2
to the analysis of the semigroup generated by operator (1.6). If X is a
topological space that is a union X=1.

n=1 Kn of an increasing sequence of
compact subsets Kn, let us denote by C.(X) the Banach space of bounded
continuous functions f on X (with the usual sup-norm) vanishing at infinity,
i.e., such that for an arbitrary E, there exists n such that |f(x)| [ E for
x ¨ Kn. A semigroup of positivity preserving contractions Tt, t \ 0, on
C.(X) is called a Feller semigroup if it is strongly continuous in t, i.e.,
||Tt f − f|| Q 0 as t Q 0 for any f ¥ C.. This definition is slightly more
general than the usual one where the topological space X is considered to
be locally compact (for a wide discussion of the theory of Feller semi-
groups we refer to ref. 17).

In the following we shall consider the set M2
c with the topology

induced from M, i.e., as a metric space with the metric m(x − y). Clearly,
M2

c is a complete metric space that is the union 1.

n=1 Kn of the compact
sets Kn={x ¥ M2

c : m2(x) [ n}.

Theorem 3.3. (i) If (2.8) holds, the family of operators Tt on B(M2
c )

defined as Tt f(x)=f(X(t, x)) is a semigroup of positivity preserving con-
tractions on B(M2

c ), which preserves the subspace Cb(M2
c ) of continuous

functions. Moreover, for any f ¥ Cb(M2
c ), Tt f(x) tends to f(x) as t Q 0

uniformly for x from any Kn. (ii) If additionally (2.16) or (2.17) hold, then
Tt is a Feller semigroup on C.(M2

c ).

Proof. (i) It is immediate from Theorem 3.2(i) and (iii). (ii) To
deduce (ii) from (i) one only needs to show that the space C.(M2

c ) is
preserved by Tt. But this follows from Theorem 3.2 (iv), namely from
estimate (3.14).
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4. CONVERGENCE OF STOCHASTIC APPROXIMATIONS

Unlike previous sections we shall use here probabilistic tools. Doing
this, we shall denote by the capital letters E and P the expectation and
respectively the probability defined by a process under consideration. For a
metric space M we shall use the standard notation DM[0, .) to denote the
Skorohod space of càdlàg paths in M.

Let XNh
h (t) be the Markov chain in hZ.

+, fin (with càdlàg sample paths)
defined by the generator (1.4) and an initial condition Nh. This Markov
chain is well defined, because it has only a finite number of states. This
section is devoted to a proof of the convergence in distribution of the
Markov chain XNh

h (t) to the deterministic process described by equa-
tions (1.7). This result will be obtained as a consequence of the following
theorem that gives an alternative (probabilistic) proof of the main existence
results for solutions to (1.7) obtained in Section 2.

Theorem 4.1. Let (2.2) (respectively (2.8)) hold and let the family
Nh=N(h) h of points from hZ.

+, fin have a uniformly bounded mass, i.e.,
m(Nh) [ c for all h and some finite c, (respectively a uniformly bounded
second mass moment, i.e., m2(Nh) [ d for all h and some finite d), and
moreover, Nh converges in c.-norm as h Q 0 to a point x ¥ M [ c. Then
there exists a subsequence of the family XNh

h (t) that converges as a family
of processes with sample paths in Dc.

[0, .) (respectively, in DM[0, .)),
to a deterministic process Xx(t) with continuous trajectories that are weak
solutions of (2.1).

Remark. For the case of standard Smoluchovski’s equations (1.10),
the analogous result was proved in ref. 18 for the discrete mass models and
then generalized in ref. 29 for the continuous mass model (without frag-
mentation, however).

Proof. By Dynkin’s formula,

Mg(t)=g(XNh
h (t)) − g(Nh) − F

t

0
Gh

k g(XNh
h (y)) dy (4.1)

is a martingale for any function g on the (finite) state space of the Markov
chain XNh

h . The idea of the proof is to show the tightness of the family of
processes XNh

h , then to choose a subsequence converging to some process Xx,
and then to pass to the limit as h Q 0 in (4.1) with the test function
g(x)=gj(x)=xj to obtain

0=(Xx(t))j − xj − F
t

0
Lk gj(Xx(y)) dy, (4.2)
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which would mean precisely that Xx(t) are weak solutions of (2.1). The
formal implementation of this programme will be divided in the following
four steps.

Step 1. If (2.2) (respectively (2.8)) holds, then for the family XNh
h the

compact containment condition holds, i.e., for arbitrary g > 0, T > 0 there
exists a compact subset Cg, T … c. (respectively Cg, T … M) for which

inf
h

P(XNh
h (t) ¥ Cg, T for 0 [ t [ T) \ 1 − g. (4.3)

If (2.2) holds, (4.3) is obvious, because as masses of XNh
h (t) are uni-

formly bounded, they all lie in a compact set of c.. To prove (4.3) for the
case of (2.8) with Cg, T being a compact subset of M, we shall follow the
line of arguments from Lemma 2.3 to show that with the probability arbi-
trary close to one, the second mass moment of the family XNh

h (t) is uni-
formly bounded for t [ T with any T > 0, and hence XNh

h (t) lie in a
compact subset. Using the martingale property of the process (4.1) with the
test function g(x)=m2(x) yields

Em2(XNh
h (t))=m2(Nh)+F

t

0
EGh

k m2(XNh
h (y)) dy. (4.4)

As

Gh
k m2(Nh)=

1
h

C
Y: |Y| [ k, m(Y) [ m(Nh)

Ch
Y(Nh)

× C
F: m(F)=m(Y)

PF
Y(m2(Nh − Yh+Fh) − m2(Nh))

[ C
Y: |Y| [ k, m(Y) [ m(Nh)

(Nh)Y

Y!
C

j
j2(fj − kj),

we use (as in the proof of Lemma 2.3) (2.8) and (2.10) to get

Gh
k m2(Nh) [ C C

Y: |Y| [ k, m(Y) [ n

xY

Y!
m(Y)[(m(Y))2 − m2(Y)]

and consequently (see again the proof of Lemma 2.3)

Gh
k m2(Nh) [ am2(Nh)+b.

Hence from (4.4) and Gronwall’s lemma one obtains

Em2(XNh
h (t)) [ eat(m2(Nh)+b/a).
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Since

m2(XNh
h (t)) [ |M(t)|+:F t

0
Gh

k m2(XNh
h (y)) dy: ,

one gets using the maximal inequality for the submartingale on the r.h.s. of
this inequality that

rP(sup
t [ T

|m2(XNh
h (t))| \ r) [ C(T)(m2(Nh)+1)

with some constant C(T). This implies (4.3).

Step 2. Let [Mg](t) denote the quadratic variation of the martin-
gale (4.1). If g(x) is finite-dimensional, i.e., g(x)=g(Pn(x)) for some n and
all x, and moreover, g is continuously differentiable with the uniformly
bounded derivative, then

E([Mg(t)] − [Mg(s)]) [ sh(t − s) (4.5)

with some constant s uniformly for all 0 [ s [ t [ T and an arbitrary T.

As the integral on the r.h.s. of (4.1) is a continuous process with a
bounded variation, we conclude that

[Mg(t)]=[g(XNh
h (t))]=C

s [ t
(Dg(XNh

h (s)))2,

where DZ(s)=Z(s) − Z(s− ) denotes the jump of a process Z(s). As (2.8)
implies (2.3) with a=1, it follows from (1.5) for both cases (2.2) and (2.8)
that all possible jumps of g(XNh

h (t)) are uniformly bounded by 2kh and
that the expectation of the number of jumps on the interval [s, t] … [0, T]
does not exceed

t
h

C
Y

1
Y!

sup
r ¥ [s, t]

(XNh
h (r))Y C

F: m(Y)=m(F)
PF

Y

[
tC
h

C
Y

1
Y!

sup
r ¥ [s, t]

(XNh
h (r))Y D

.

j=1
jkj [

tC
h

C
k

l=1

m(Nh) l

l!

with some constant C. Hence

E([Mg(t)] − [Mg(s)]) [ 4k2h(t − s) C C
k

l=1

m(Nh) l

l!
,

which implies (4.5).
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Step 3. If (2.2) (respectively (2.8)) holds, the family of processes
XNh

h (t) is tight as a family of processes with sample paths in Dc.
[0, .)

(respectively, in DM[0, .)).

As the compact containment condition (4.3) holds, by the well known
criterion (see, e.g., Theorem 9.1 from Chapter 3 in ref. 16), to prove tight-
ness one must show that the family of real-valued processes g(XNh

h (t)) is
relatively compact (as a family of processes with sample paths in DR[0, .))
for any finite-dimensional g from Step 2. To this end, by standard tightness
criteria for real valued processes (see, e.g., Corollary 7.4 from Chapter 3 of
ref. 16 or the Aldous–Rebolledo criterion in ref. 12) one needs to estimate
the oscillations of XNh

h (t). As the integral part in (4.1) is continuous with
finite variation, to estimate its oscillations one only needs to estimate the
oscillations of the quadratic variation [Mg](t). But for [Mg](t) all
required estimates follow from (4.5).

Step 4. End of the proof of Theorem 4.1.

It remains to show that the limit Xx(t) of a converging subsequence
XNh

h (t), h Q 0 and belong to a countable set, is a weak solution of (2.1). As
we mentioned above, we are going to use (4.1) with the test function
g(x)=gj(x)=xj to obtain (4.2). From Step 2 it follows that the martingale
on the l.h.s. of (4.1) with this g tends to zero almost surely. Clearly,
the first two terms on the r.h.s. of (4.1) with this g will tend to the
first two terms on the r.h.s. of (4.2). So, we need to show that the
integral > t

0 Gh
k gj(XNh

h (t)) dt tends to the integral on r.h.s. of (4.2). As
|(Gh

k gj − Lk gj)(x)| tends to zero as h Q 0 uniformly for all x with a uni-
formly bounded mass, we need only to show that

|Lk gj(XNh
h (t)) − Lk gj(Xx(t))| Q 0,

or more explicitly that for any j

F
t

0
(fj(XNh

h (s)) − fj(Xx(s))) ds Q 0. (4.6)

But from a weak convergence it follows (see, e.g., ref. 16) that XNh
h (s)

converges to Xx(s) for all s ¥ [0, t] apart from some countable subset. As
the function f is uniformly continuous on M[ c for any positive c (because,
as shown in our proof of Lemma 2.2, it is a uniform limit of uniformly
continuous functions fn), it follows that the difference under the integral
in (4.6) is uniformly bounded and tends to zero for all s apart from some
countable subset. This implies (4.6) and completes the proof of Theorem 4.1.
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As an immediate consequence of Theorem 4.1(ii), Theorem 3.2(i), (ii),
and Theorem 3.3(ii) we obtain now the following main result of this paper.

Theorem 4.2. Let (2.8) hold and let the family Nh=N(h) h of
points from hZ.

+, fin have a uniformly bounded second mass moment, i.e.,
m2(Nh) [ d for all h and some finite d, and moreover, Nh converges in
c.-norm as h Q 0 to a point x ¥ M2

c with some finite c. Then the family
XNh

h (t) with paths in DM[0, .) converges to a deterministic process Xx(t)
with continuous trajectories that are (mass-conserving) cp-solutions of (2.1)
with any p > 1. If additionally (2.16) or (2.17) hold, then the Feller semi-
group of the Markov chain XNh

h (t) tends to the Feller semigroup on
C.(M2

c ) defined by the solutions of (1.7).

5. DIFFUSION APPROXIMATION FOR MASS EXCHANGE

PROCESSES

As was shown in this paper, the uniform scaling (1.4) of the Markov
mass exchange process defined by (1.3) leads to the deterministic measure-
valued limit described by kinetic equations (1.7). In the light of the recent
increase of interest to stochastic measure-valued limits (see, e.g., ref. 12; in
case of branching processes such limits are called superprocesses, see ref. 15
for a review), one can naturally ask about possible stochastic measure-
valued limits of (1.3) under an appropriate scaling. For general k-nary
interacting particle systems with a finite number of types of the particles
such limits were studied in ref. 20. It turns out that the conservation of
mass property poses certain restrictions to the existence of nondeterministic
limits (diffusion approximation requires some symmetry of the process),
and such limits seem to be not available for generators (1.3) with k [ 2, i.e.,
for binary interactions, as well as for processes with pure coagulation or
fragmentation. Nevertheless, as we are going to show, for some process of
type (1.3), the natural diffusion approximation can be constructed. We
shall not discuss here this approximation in the most general situation, but
rather for the simplest concrete model. This model does not look very
realistic physically, as it assumes some sort of pattern behavior of particles.
Possibly, it can be better interpreted in the biological context of ref. 31.

Consider a process with generator (1.3) where PF
Y ] 0 only for Y con-

sisting of three particles such that the sum of masses of two of them equals
the mass of the third, i.e., for Y=ei+ej+ei+j. Next, suppose that as the
result of a collision (or interaction) of three particles of mass i, j, i+j either
the particle of mass i+j will fragment into two pieces of mass i and j or
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the particles with masses i and j will coagulate into a single particle. Under
these assumptions the generator (1.3) will take the form

Gf(N)=C
i, j

ni(nj − d j
i ) ni+j [Pf

ij(f(N − ei+j+ei+ej) − f(N))

+Pc
ij(f(N+ei+j − ei − ej) − f(N))].

Assuming further that

Pf
ij=

1
h

aij+pf
ij, Pc

ij=
1
h

aij+pc
ij

we get the corresponding scaled operator (1.5) in the form

Ghf(x)=C
i, j

xi(xj − hd j
i ) xi+j

51aij

h2+
pc

ij

h
2 (f(Nh+hei+j − hei − hej) − f(Nh))

+1aij

h2+
pf

ij

h
2 (f(Nh − hei+j+hei+hej) − f(Nh))6 . (5.1)

Clearly, as h Q 0, this operator tends formally to

Lf(x)=C
i, j

xixjxi+j
5(pf

ij − pc
ij) 1

“f
“xi

+
“f
“xj

−
“f

“xi+j

2

+aij
1“

2f
“x2

i

+
“

2f
“x2

j

+
“

2f
“x2

i+j

+2
“

2f
“xi “xj

− 2
“

2f
“xi “xi+j

− 2
“

2f
“xj “xi+j

26 .

(5.2)

Let us give a rigorous result on the convergence of the corresponding
stochastic processes for initial conditions x ¥ R.

+, fin, which is a consequence
of the theory developed in ref. 20. Let An denote an operator on smooth
functions on Rn with a compact support defined by formula (5.2) but with
the sum over all i, j replaced by the sum over i, j such that i+j [ n. Let
XNh

h (t) be the Markov chain in hZ.

+, fin defined by the generator (5.1) and
the initial condition Nh. Notice that due to a special structure of (5.1),
XNh

h (t) stays in hZn
+ … Rn

+ all times whenever N ¥ Zn
+. The following result

is a direct consequence of Theorem 3 from ref. 20, which is in its turn a
consequence of the theory developed in ref. 23.

Theorem 5.1. If N ¥ Zn
+, the Markov process XNh

h (t) ¥ hZn
+ … hZ.

+, fin

converges in the sense of distributions to the (uniquely defined) conserva-
tive diffusion process on Rn

+ with the generator An.
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